
## Targeting CD47 by Monoclonal Antibody

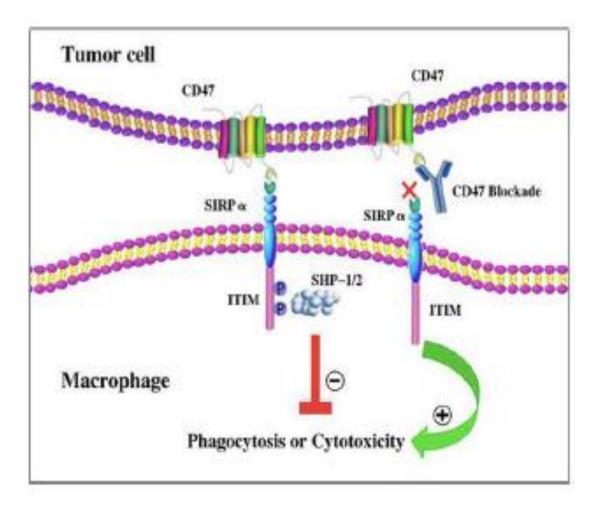
David A. Sallman, MD Assistant Member Myeloid Section Head david.sallman@moffitt.org

H. Lee Moffitt Cancer Center& Research InstituteTampa, FL



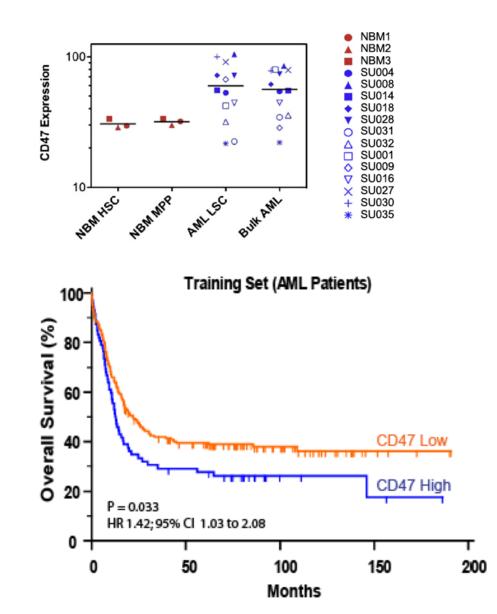


# **New Drugs Hematology**


President: Pier Luigi Zinzani Co-President: Michele Cavo

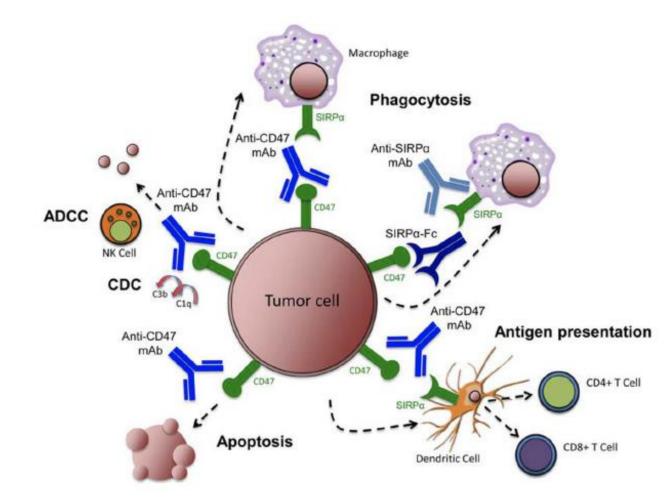
Bologna, Royal Hotel Carlton May 18-20, 2022

| Company name                           | Research support | Employee | Consultant | Stockholder | Speakers bureau | Advisory board | Other |
|----------------------------------------|------------------|----------|------------|-------------|-----------------|----------------|-------|
| Abbvie, AvenCell                       |                  |          |            |             |                 | х              |       |
| BlueBird Bio                           |                  |          |            |             |                 | x              |       |
| BMS, Gilead, Intellia                  |                  |          |            |             |                 | x              |       |
| Janssen, Kite, Novartis,<br>Servier    |                  |          |            |             |                 | x              |       |
| Shattuck Labs, Syndax,<br>Syros        |                  |          |            |             |                 | x              |       |
| Aprea, Jazz                            | x                |          |            |             |                 |                |       |
| Magenta, Molecular<br>Partners, Takeda |                  |          | х          |             |                 |                |       |
| Incyte, Servier                        |                  |          |            |             | x               |                |       |

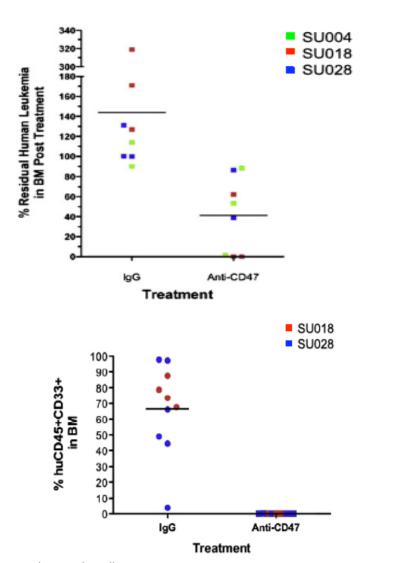

### Structure and Function of CD47 and SIRPα

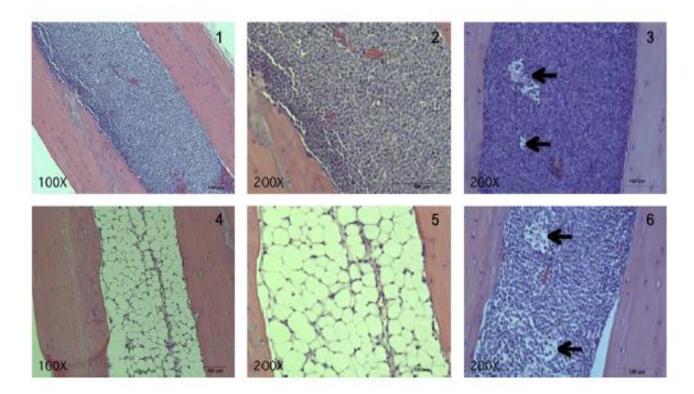
- CD47 is a widely expressed transmembrane protein and serves as the ligand for signal regulatory protein alpha (SIRPα)
- SIRPα is expressed on phagocytic cells including magrophages and dendritic cells
- CD47/SIRPα binding initiates a signal transduction cascade resulting in SHP 1/2 activation and consequent inhibition of phagocytosis
- CD47 helps maintain immunotolerance by non-malignant cells under physiological conditions
- CD47 Blockade can abrogate this suppression signal




### **Innate Immune System Evasion via CD47**

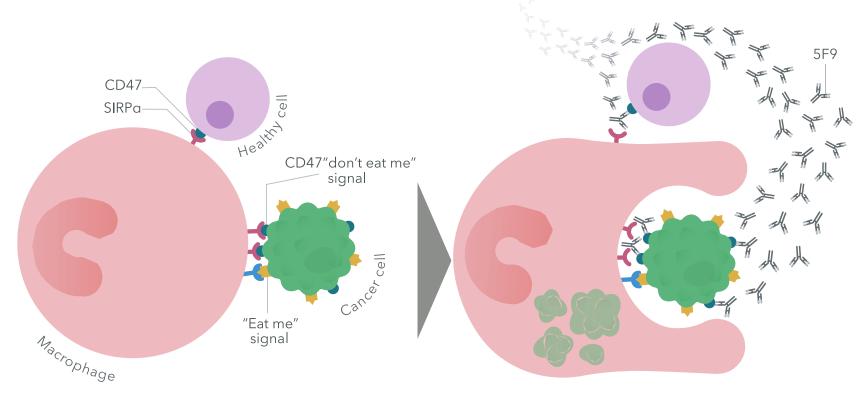
- CD47 is a "do not eat me" signal on cancers that enables macrophage immune evasion
- CD47 is the dominant macrophage checkpoint overexpressed on most cancers
- In AML, CD47 expression is overexpressed on LSC/bulk AML vs normal HSC/MPP
- CD47 leads to a strong fitness advantage in AML
  LSCs
- Increased CD47 expression predicts worse prognosis in AML patients



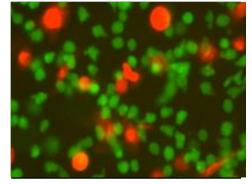


Majeti, Chao et al., Cell 2009; Jaiswal et al., Cell 2009

### Therapeutic Impact of CD47/SIRPα Blockade in Cancer

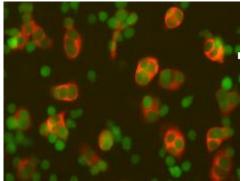



### **Preclinical efficacy of CD47 and AML**






Majeti, Chao et al., Cell 2009;

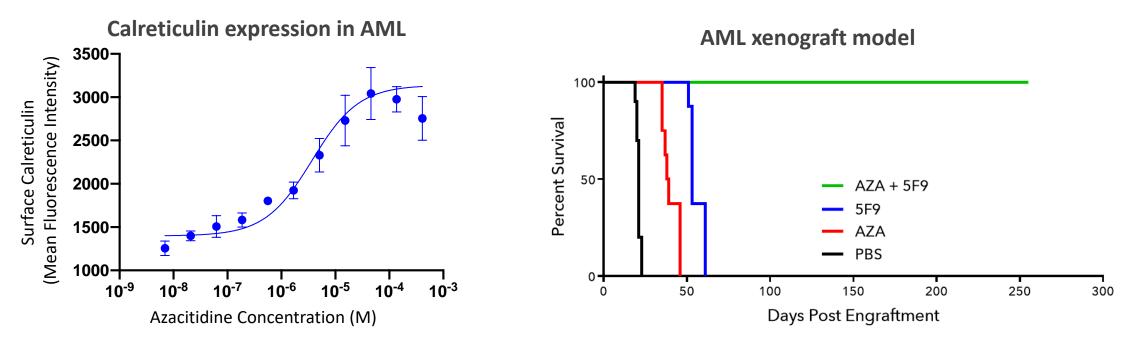

#### Magrolimab (Formerly 5F9) is a First-in-class Macrophage Immune Checkpoint Inhibitor Targeting CD47



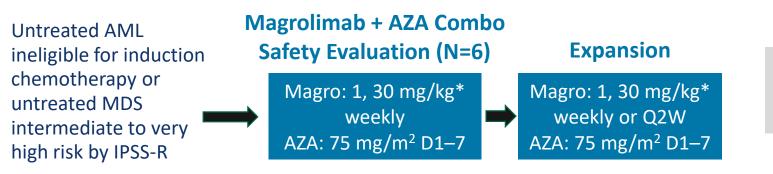
**Control mAb: No Phagocytosis** 



Anti-CD47 mAb: Phagocytosis




**Macrophages Cancer cells** 


• Magrolimab is an IgG4 anti-CD47 monoclonal antibody being investigated in multiple cancers

#### Magrolimab Synergizes with Azacitidine to Induce Remissions in AML Xenograft Models

- Azacitidine (AZA) induces pro-phagocytic "eat me" signals like calreticulin on cancer cells
- Increased eat me signals induced by azacitidine synergizes with CD47 blockade of the "don't eat me" signal leading to enhanced phagocytosis



# 5F9005 Study Design: Magrolimab in Combination With AZA in MDS and AML

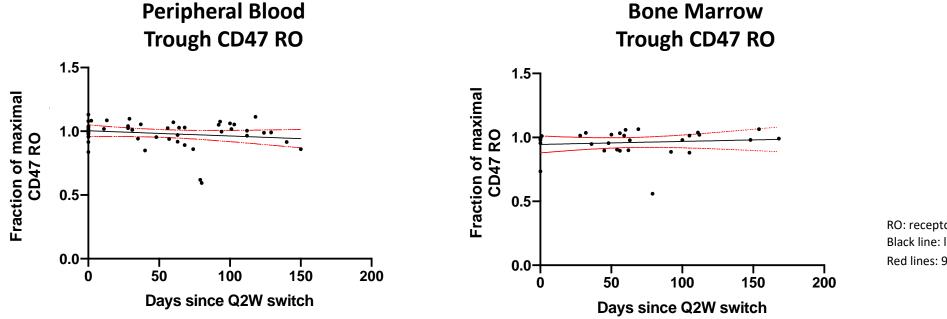


#### **Primary objectives**

- 1. Safety of magrolimab alone or with AZA
- 2. Efficacy of magrolimab + AZA in untreated AML/MDS

#### **Secondary objectives**

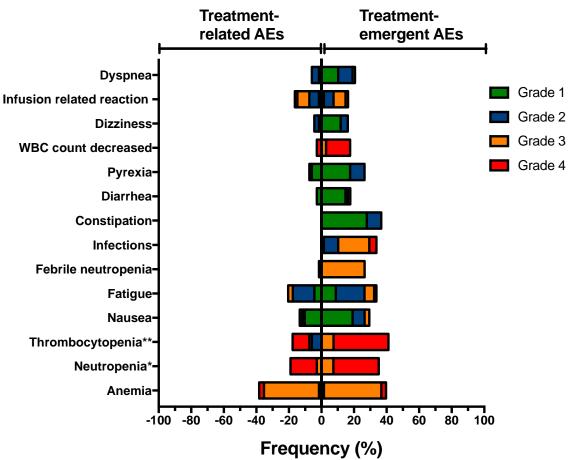
- 1. Pharmacokinetics, pharmacodynamics, and immunogenicity of 5F9
- 2. Additional measures of efficacy (DOR, PFS, OS)


#### **Exploratory objective**

To assess CD47 receptor occupancy, markers of immune cell activity, and molecular profiling in AML/MDS

- A magrolimab priming dose (1 mg/kg) and dose ramp-up was utilized to mitigate on-target anemia
- Data from the expansion cohort is presented

\*Dose ramp-up from 1 mg/kg to 30 mg/kg by week 2, then 30 mg/kg maintenance dosing or 30 mg/kg Q2W starting Cycle 3+. IPSS-R: Revised International Prognostic Scoring System.


### Magrolimab Q2W Dosing Results in Similar CD47 Receptor Occupancy as Q1W Dosing

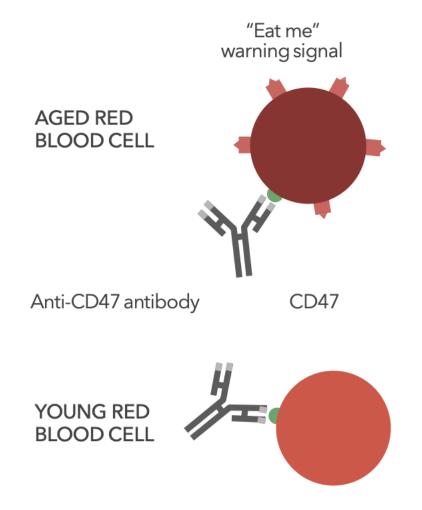


RO: receptor occupancy. Black line: linear regression best fit. Red lines: 95% confidence intervals.

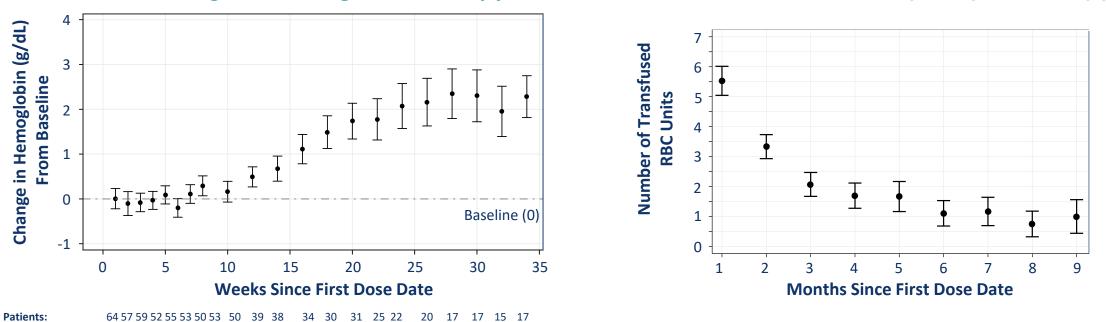
- Patients were dosed with magrolimab Q1W throughout or Q2W dosing starting Cycle 3 and beyond
- Similar CD47 RO was observed in the peripheral blood and bone marrow after Q2W dosing change in Cycle 3+
- A magrolimab Q2W dose regimen has been selected based on PK/PD results and patient convenience

#### Magrolimab in Combination With AZA Is Well Tolerated




#### MDS and AML Patients (N=68)

- No maximum tolerated dose was reached; magrolimab + AZA profile consistent with AZA monotherapy
- No significant cytopenias, infections, or immunerelated AEs were observed (most patients were cytopenic at baseline)
- Anemia and transfusion frequency improved over time
- No deaths occurred during the first 60 days on study for either AML or MDS patients
- Treatment discontinuation due to drug-related AE occurred in only 1 of 68 (1.5%) of all patients treated with magrolimab + AZA


AEs ≥15% or AEs of interest are shown. All patients with at least 1 magrolimab dose are shown. \*Includes neutropenia and neutrophil count decreased. \*\*Includes thrombocytopenia and platelet count decreased. AEs, adverse events.

### **On Target Anemia and Mitigation Strategies**

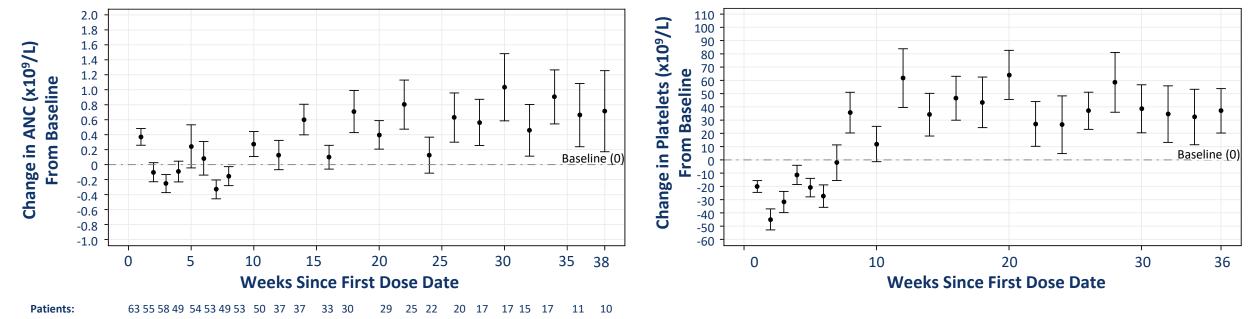
- Aged RBCs express pro-eat me signals whereas young RBCs do not leading to clearance of senescent RBCs
- Anemia Mitigation via:
  - Priming strategy (e.g. magrolimab)
  - RBC pruning process of CD47
  - Decrease/eliminate RBC affinity (e.g. TTI-621/622, ALX-147 and others)
  - Novel platforms (prodrug or tumor targeted nanoparticles)



### **On-Target Anemia Is a Pharmacodynamic Effect and Is Mitigated** With a Magrolimab Priming and Maintenance Dosing Regimen

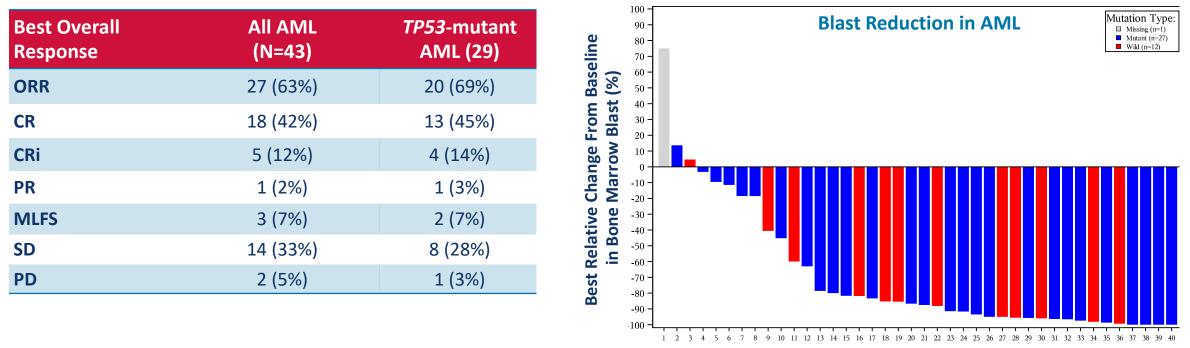


**Hemoglobin Changes on Therapy** 


#### **RBC Transfusion Frequency on Therapy**

- An initial priming dose mitigates on-target anemia by CD47 blockade, resulting in a transient mild hemoglobin drop on the first dose (mean of 0.4 g/dL), which returns to baseline
- The majority of patients had significant hemoglobin improvement and decrease in transfusion frequency over time

# Neutrophil and Platelet Improvement Is Seen on Magrolimab + AZA Therapy

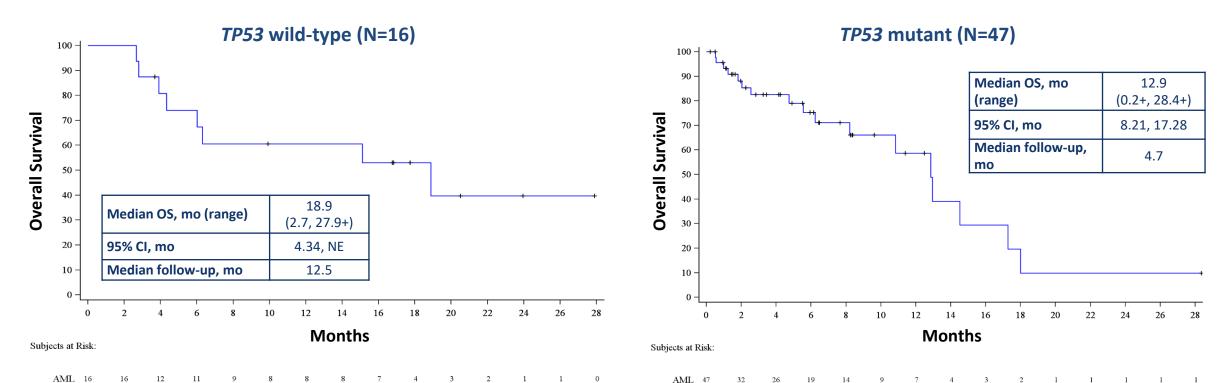

**Neutrophil Changes on Therapy** 





- Magrolimab + AZA does not induce significant neutropenia or thrombocytopenia
- The majority of patients improve their neutrophil and platelet count while on therapy

#### Magrolimab + AZA Induces High Response Rates in AML

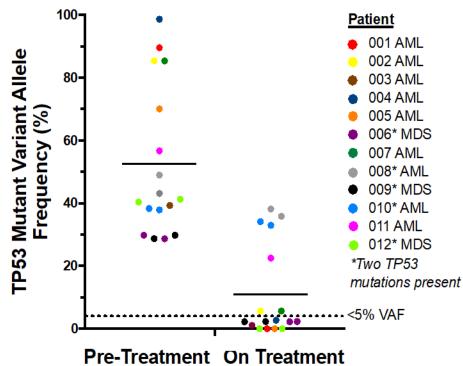



Patient\*

- Magrolimab + AZA induces a 63% ORR and 42% CR rate in AML, including similar responses in TP53-mutant patients
- Median time to response is 1.95 months (range 0.95 to 5.6 mo), more rapid than AZA monotherapy
- 9.6% of patients proceeded to bone marrow stem cell transplantation
- Magrolimab + AZA efficacy compares favorably to AZA monotherapy (CR rate 18%–20%)<sup>1,2</sup>

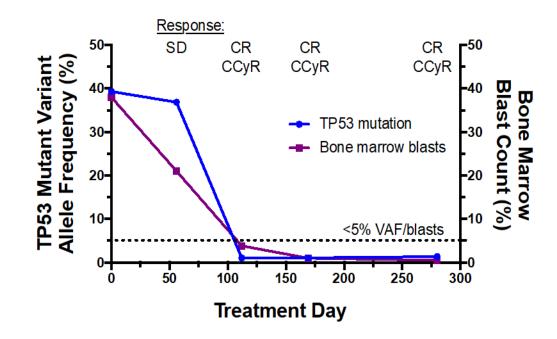
Response assessments per 2017 AML ELN criteria. Patients with at least 1 post-treatment response assessment are shown. \*Three patients not shown due to missing values; <5% blasts imputed as 2.5%. 1. Fenaux P, et al. *J Clin Oncol*. 2010;28(4):562-569. 2. Dombret H, et al. *Blood*. 2015;126(3):291-299.

### Preliminary Median Overall Survival Is Encouraging in Both TP53 Wild-Type and Mutant Patients




- The median OS is 18.9 months in *TP53* wild-type patients and 12.9 months in *TP53*-mutant patients
- This initial median OS data may compare favorably to venetoclax + hypomethylating agent combinations (14.7-17.5 mo in all-comers,<sup>1,3</sup> 5.2–7.2 mo in patients who are *TP53* mutant<sup>2,3</sup>)
- Additional patients and longer follow-up are needed to further characterize the survival benefit NE, not evaluable.

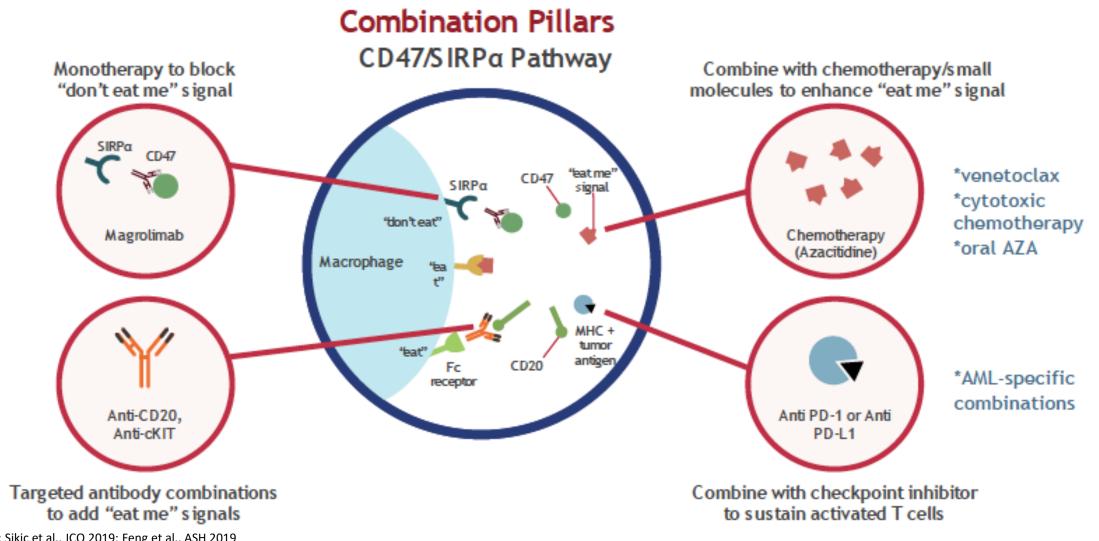
1. DiNardo CD, et al. N Eng J Med. 2020;383(7):617-629. 2. Kim K, et al. Poster presented at: 62nd ASH Annual Meeting; December 5-8, 2020 (virtual). 3. DiNardo CD, et al. Blood. 2019;133(1):7-17.


### Magrolimab + AZA Eliminates TP53 Mutational Burden

#### **TP53** Mutation Burden on Treatment



Patient data available for analysis. Best overall reduction is shown. NGS data shown.


65F therapy-related, complex karyotype, and *TP53* mutant AML: Achieved CR, CyCR, clearance of *TP53* mutations at Cycle 5 and ongoing



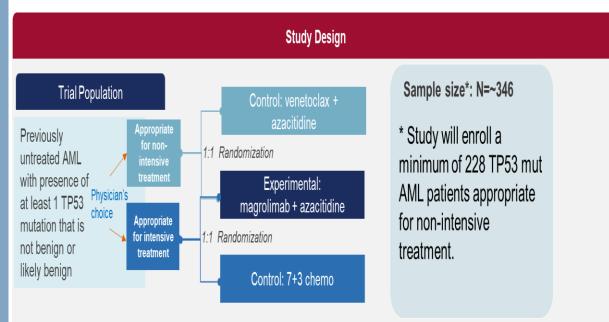
CyCr: complete cytogenetic response



### **Combination Therapy with CD47 Targeted Therapy**

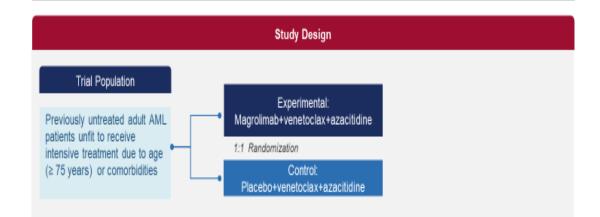


Chao et al., Cell 2010; Sikic et al., JCO 2019; Feng et al., ASH 2019


#### **Results: Response Rates per ITT (n=48)**

|                             | Frontline C            | ohort (n=25)             | R/R Cohort (n=23)  |                     |  |
|-----------------------------|------------------------|--------------------------|--------------------|---------------------|--|
| Outcomes                    | TP53 mutated<br>(n=14) | TP53 wild type<br>(n=11) | VEN-naïve<br>(n=8) | Prior VEN<br>(n=15) |  |
| ORR                         | 12 (86)                | 11 (100)                 | 6 (75)             | 3 (20)              |  |
| CR/CRi                      | 9 (64)                 | 10 (91)                  | 5 (63)             | 3 (20)              |  |
| CR                          | 9 (64)                 | 7 (64)                   | 3 (38)             | 0                   |  |
| CRi                         | 0                      | 3 (27)                   | 2 (25)             | 3 (20)              |  |
| MLFS / PR <sup>1</sup>      | 3 (21)                 | 1 (9)                    | 1 (13)             | 0                   |  |
| MRD neg FCM                 | 5/9* (55)              | 4/9 (45)                 | 2/6 (33)           | 0                   |  |
| CCyR                        | 4/9 <sup>‡</sup> (44)  | 5/6 (83)                 | 3/5 (60)           | 1/2 (50)            |  |
| No response                 | 2 (14)                 | 0                        | 2 (25)             | 12 (80)             |  |
| TT 1 <sup>st</sup> response | 0.7 [0.6-1.9]          | 0.7 [0.7-1.5]            | 0.7 [0.6-4.1]      | 2.2 [1.8-2.6]       |  |
| TT Best response            | 1.5 [0.7-3.2]          | 1.1 [0.7-2.9]            | 1.5 [1.0-4.1]      | 2.0 [1.2-3.9]       |  |
| Med TT ANC>500              | 28 (20 – 41) days      |                          |                    |                     |  |
| Med TT Plt>50K              |                        | 41) days                 |                    |                     |  |
| 8-wk mortality              | 0                      | 0                        | 1 (13)             | 3 (20)              |  |




### **Ongoing Phase 3 Studies with Magro in FL AML**

#### Phase III AZA+Magro vs Investigator Choice in TP53 AML (ENHANCE-2)



#### Phase III AZA+VEN+Magro vs AZA+VEN in older/unfit AML (ENHANCE-3)

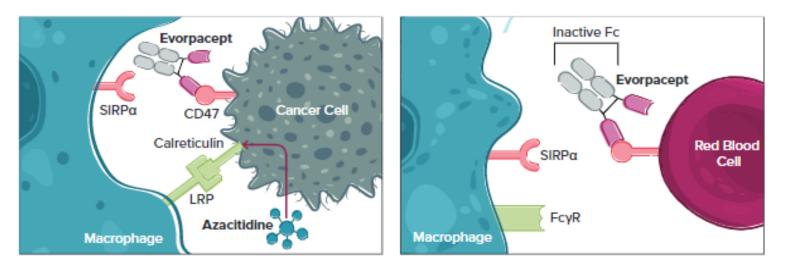
### ENHANCE-3: Phase 3 study of 1L unfit All Comer AML with magrolimab +venetoclax+ azacitidine



#### Stratification:

- 1) Appropriateness for non-intensive therapy vs. intensive therapy
- 2) Age <75 vs. ≥75
- 3) Geographic region: US vs. outside the US

#### Endpoints:

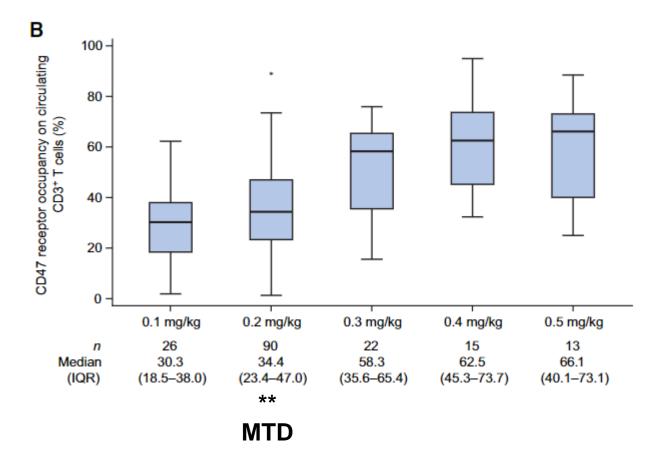

- Primary endpoint: OS in TP53 mut AML population appropriate for non-intensive treatment
- First secondary endpoint (alpha controlled): OS in all TP53 mut AML population
- Other key secondary endpoints (alpha controlled): EFS, Transfusion independence, CR/CR<sub>MRD-</sub>, PRO in all TP53 mut AML population

#### Endpoints:

#### Primary endpoint: CR, Overall survival

Secondary endpoints: 1. MRD-ve CR 2.CR+CRh, 3. Duration of CR, 4. Duration of CR+CRh 5. Transfusion independence 6. EFS 6. QOL/PRO

### Evorpacept (ALX148) – ASPEN-02 Study




|           | Previously Untreated<br>HR-MDS (N=6) | Previously Untreated<br>HR-MDS with TP53<br>Mutation (N=5) | Relapsed/Refractory<br>MDS (N=9) <sup>#</sup> |  |
|-----------|--------------------------------------|------------------------------------------------------------|-----------------------------------------------|--|
| ORR       | 3 (50%)                              | 3 (60%)                                                    | 5 (56%)*                                      |  |
| CR        | 2 (33%)                              | 2 (40%)                                                    | 0                                             |  |
| PR        | 0                                    | 0                                                          | 0                                             |  |
| Marrow CR | 1 (17%)<br>with HI                   | . 1 (20%)<br>with HI                                       | 5 (56%)*                                      |  |
| н         | 0                                    | 0                                                          | 0                                             |  |
| SD        | 2 (33%)                              | 1 (20%)                                                    | 2 (22%)                                       |  |
| PD        | 1 (17%)                              | 1 (20%)                                                    | 1 (11%)                                       |  |

### ASPEN-05 Triplet Study with ven + aza is recruiting

Data Cutoff 25Oct2021; Response evaluable population (n=15); \*includes 3 unconfirmed responses; <sup>4</sup>1 subject had G5 event unrelated to treatment prior to first disease assessment; **ORR** – Objective response rate; **CR** – Complete response;

#### **TTI-621 and TTI-622**



 TTI-622 TP53 AML study with azacitidine or TP53 wildtype triplet with azacitidine + venetoclax has started accrual late 2021



### Novel CD47 Modalities and Combination Possibilities in Myeloid Neoplasms

- Synergy with Fc receptor of mabs targeting myeloid antigens (e.g. CD33/CD123/TIM3/CLL1/CD70)
- Ongoing/possible Triplet strategies which could include:
  - Azacitidine + magrolimab + venetoclax in AML (NCT04435691)
  - Combination with traditional PD1/PDL1 adaptive immune checkpoints (NCT03922477)
  - Combination of azacitidine + magrolimab + APR-246 for TP53 mutant patients
  - Combination with synergistic combinations in MDS/AML (such as HMA + MBG-453; planned phase 1 in 2022)
- HMBD004 is a bispecific anti-CD47xCD33 antibody which has shown decrease tumor burden and increased progression free survival in CD47+CD33+ AML mouse models
- CD47 directed CART cells
- Currently at least 13 CD47/SIRPα agents in clinical trial with ~50 agents in preclinical development

## **Acknowledgements**

#### **Moffitt Cancer Center**

Rami KomrokjiNajla AliEric PadronLing ZhangJeffrey LancetQianxing MoAmy McLemoreJiqiang YaoAmy AldrichKendra SweetKathy McGrawChetasi TalatiLisa NardelliJohn PuskasSeongsuk YunKendra Sweet

MDACC Navel Daver

Navel Daver Guillermo Garcia-Manero

#### Co-investigators on magro+aza MDS/AML Study

Gilead Mark Chao



Supported by the Edward P. Evans Foundation

mds foundation inc.



Service Stat